Human Action Recognition with Two-Level SVMs
نویسندگان
چکیده
منابع مشابه
Exemplar-SVMs for Action Recognition
This goal of this paper is to introduce a method for action recognition that significantly reduces the labeling process. The method involves training a separate linear support vector machine (SVM) classifier for each selected exemplar and combining the scores to form mid-level features. Our approach is trained and tested on the UCF Sports Action data set. The accuracies achieved by the combined...
متن کاملSpeech Recognition using SVMs
An important issue in applying SVMs to speech recognition is the ability to classify variable length sequences. This paper presents extensions to a standard scheme for handling this variable length data, the Fisher score. A more useful mapping is introduced based on the likelihood-ratio. The score-space defined by this mapping avoids some limitations of the Fisher score. Class-conditional gener...
متن کاملLearning multi-level features for sensor-based human action recognition
This paper proposes a multi-level feature learning framework for human action recognition using body-worn inertial sensors. The framework consists of three phases, respectively designed to analyze signal-based (low-level), components (mid-level) and semantic (high-level) information. Low-level features, extracted from raw signals, capture the time and frequency domain property while mid-level r...
متن کاملTwo-Phase Biomedical NE Recognition based on SVMs
Using SVMs for named entity recognition, we are often confronted with the multi-class problem. Larger as the number of classes is, more severe the multiclass problem is. Especially, one-vs-rest method is apt to drop the performance by generating severe unbalanced class distribution. In this study, to tackle the problem, we take a two-phase named entity recognition method based on SVMs and dicti...
متن کاملEnhancing Human Action Recognition with Region Proposals
Deep convolutional network models have dominated recent work in human action recognition as well as image classification. However, these methods are often unduly influenced by the image background, learning and exploiting the presence of cues in typical computer vision datasets. For unbiased robotics applications, the degree of variation and novelty in action backgrounds is far greater than in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Signal Processing
سال: 2013
ISSN: 1342-6230,1880-1013
DOI: 10.2299/jsp.17.159